182 research outputs found

    Arthroscopic fixation of anterior cruciate ligament tibial avulsion fractures: the suture “bridge” pull out technique and evaluation of results

    Get PDF
    Background: Tibial anterior cruciate ligament (ACL) avulsion fractures are a common injury in children and adolescents. Operative treatment is indicated for type 2, 3 and 4 fractures. Arthroscopic fixation is the preferred method and numerous fixation options are described. The purpose of this study is to evaluate the results of a new technique of arthroscopic fixation.Methods: A retrospective study was done involving twelve patients having displaced ACL tibial avulsion fractures. The arthroscopic suture “bridge” pull out technique was used to fix these fractures. Patient symptoms like knee pain, locking, clicking, sensation of giving way and clinical signs like tenderness, range of motion, Mc Murray’s test, stability test and Lysholm knee scores were evaluated pre operatively and post operatively at 3 months and 6 months. Patient satisfaction was noted at latest follow up.Results: One patient had type 2, 7 patients had type 3 and 4 patients had type 4 tibial ACL avulsion fractures. All the fractures united and all patients achieved full knee range of motion by 2 months post-operative. The clinical symptoms and signs improved post operatively. The mean Lysholm knee score at 3 months follow up was 88.8 and at 6 months follow up were 98.8. At latest follow up, all the patients were satisfied with their knee function. Conclusions: The arthroscopic suture “bridge” pull out technique is an effective method for fixation of ACL tibial avulsion fractures with respect to knee stability, range of motion and resumption of pre injury activity level

    Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study

    Get PDF
    Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three days with perturbations in TEC, revealing strong geomagnetic storm conditions that are also apparent in processed GEONET TEC observations. In addition to the traveling ionospheric disturbances (TIDs)produced by the earthquake and tsunami, we also detect “regular” TIDs across Japan about 5 hours following the Tohoku event, concluding these are likely due to geomagnetic activity. The variety of observed TEC perturbations are consistent with tsunami-generated gravity waves, auroral activity, regular TIDs and equatorial fluctuations induced by increased geomagnetic activity. We demonstrate our capabilities to monitor TEC fluctuations using JPL’s real-time Global Assimilative Ionospheric Model (GAIM) system. We show that a real-time global TEC monitoring network is able to detect the acoustic and gravity waves generated by the earthquake and tsunami. With additional real-time stations deployed, this new capability has the potential to provide real-time monitoring of TEC perturbations that could potentially serve as a plug-in to enhance existing early warning systems

    The Draw-A-Clock Contest: A Strategy for Improving Cognitive Status Assessment by Trainees

    Get PDF
    Background: Historically, psychiatrists have been less inclined than neurologists to utilize pencil and paper tasks during bedside cognitive assessments. Objective: The Draw-AClock Contest was established in 1986 at the University of Massachusetts to promote use of cognitive assessment tasks by psychiatry residents. Methods: Used in neuropsychological assessments since the 1930’s, clock tasks have been popular screening tools for executive function, praxis, visuospatial and constructive ability, often as part of dementia screening. Given its broad utility as a screening tool and the ease and speed of its administration, the Draw-A-Clock task (with hands set to 11:10 and no circle provided) was selected for use by UMass psychiatry residents, with further bedside assessment encouraged to explore any detected deficits. To encourage participation and foster clinical inquiry, residents are asked to submit clinically interesting de-identified patient clocks. For 21 years, clock contest entries have been collected each spring, with basic demographic, diagnostic, and process notes. Resident names are encoded, and entries are judged by a neuropsychiatrist (SB) and a neuropsychologist (EK). A “clock trophy” and detailed analysis of the submission is presented to the winner at the annual graduation banquet. Results: As a result of this contest, mental status examinations by trainees have become more comprehensive and an atmosphere of neuropsychiatric inquiry has been maintained. Faculty members have also incorporated this task into their mental status assessments, thus establishing a culture of cognitive inquiry and an academic tradition. Examples of winning clocks and common findings will be presented. Published abstract: Sullivan J, Benjamin S, Case Report: CADASIL with Cysteine-Sparing Notch-3 Mutation, American Neuropsychiatric Association, abstract, Journal of Neuropsychiatry and Clinical Neuroscience 21(2):221, 2009. DOI 10.1176/appi.neuropsych.21.2.221

    Ionospheric Signatures of Tohoku-Oki Tsunami of March 11, 2011: Model Comparisons Near the Epicenter

    Get PDF
    We observe ionospheric perturbations caused by the Tohoku earthquake and tsunami of March 11, 2011. Perturbations near the epicenter were found in measurements of ionospheric total electron content (TEC) from 1198 GPS receivers in the Japanese GEONET network. For the first time for this event, we compare these observations with the estimated magnitude and speed of a tsunami-driven atmospheric gravity wave, using an atmosphere-ionosphere-coupling model and a tsunami model of sea-surface height, respectively. Traveling ionospheric disturbances (TIDs) were observed moving away from the epicenter at approximate speeds of 3400 m/s, 1000 m/s and 200–300 m/s, consistent with Rayleigh waves, acoustic waves, and gravity waves, respectively. We focus our analysis on gravity waves moving south and east of the epicenter, since tsunamis propagating in the deep ocean have been shown to produce gravity waves detectable in ionospheric TEC in the past. Observed southeastward gravity wave perturbations, seen 60 min after the earthquake, are mostly between 0.5 to 1.5 TECU, representing up to 5% of the background vertical TEC (VTEC). Comparisons of observed TID gravity waves with the modeled tsunami speed in the ocean and the predicted VTEC perturbation amplitudes from an atmosphere-ionosphere-coupling model show the measurements and models to be in close agreement. Due to the dense GPS network and high earthquake magnitude, these are the clearest observations to date of the effect of a major earthquake and tsunami on the ionosphere near the epicenter. Such observations from a future real-time GPS receiver network could be used to validate tsunami models, confirm the existence of a tsunami, or track its motion where in situ buoy data is not available

    Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice

    Full text link
    The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients' home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials

    TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

    Full text link
    Solar tomography has progressed rapidly in recent years thanks to the development of robust algorithms and the availability of more powerful computers. It can today provide crucial insights in solving issues related to the line-of-sight integration present in the data of solar imagers and coronagraphs. However, there remain challenges such as the increase of the available volume of data, the handling of the temporal evolution of the observed structures, and the heterogeneity of the data in multi-spacecraft studies. We present a generic software package that can perform fast tomographic inversions that scales linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models: TomograPy (http://nbarbey.github.com/TomograPy/), an open-source software freely available on the Python Package Index. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors. We describe the main features of the code and show three practical examples of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1 data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table

    Concurrent pulmonary zygomycosis and Mycobacterium tuberculosis infection: a case report

    Get PDF
    A non-smoking 77-year old gentleman of Indian origin was admitted with a 4-month history of intermittent night sweats, haemoptysis and 6 kg of weight loss. CT scan of thorax demonstrated a 2.5 cm mass in the right middle lobe with multiple small nodules within the right lung and confirmed the presence of mediastinal and hilar lymph nodes

    Trapped in the prison of the mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh

    Get PDF
    The concept of Trapped Populations has until date mainly referred to people ‘trapped’ in environmentally high-risk rural areas due to economic constraints. This article attempts to widen our understanding of the concept by investigating climate-induced socio-psychological immobility and its link to Internally Displaced People’s (IDPs) wellbeing in a slum of Dhaka. People migrated here due to environmental changes back on Bhola Island and named the settlement Bhola Slum after their home. In this way, many found themselves ‘immobile’ after having been mobile—unable to move back home, and unable to move to other parts of Dhaka, Bangladesh, or beyond. The analysis incorporates the emotional and psychosocial aspects of the diverse immobility states. Mind and emotion are vital to better understand people’s (im)mobility decision-making and wellbeing status. The study applies an innovative and interdisciplinary methodological approach combining Q-methodology and discourse analysis (DA). This mixed-method illustrates a replicable approach to capture the complex state of climate-induced (im)mobility and its interlinkages to people’s wellbeing. People reported facing non-economic losses due to the move, such as identity, honour, sense of belonging and mental health. These psychosocial processes helped explain why some people ended up ‘trapped’ or immobile. The psychosocial constraints paralysed them mentally, as well as geographically. More empirical evidence on how climate change influences people’s wellbeing and mental health will be important to provide us with insights in how to best support vulnerable people having faced climatic impacts, and build more sustainable climate policy frameworks
    corecore